These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation.
    Author: Juul A, Dalgaard P, Blum WF, Bang P, Hall K, Michaelsen KF, Müller J, Skakkebaek NE.
    Journal: J Clin Endocrinol Metab; 1995 Aug; 80(8):2534-42. PubMed ID: 7543116.
    Abstract:
    Circulating IGF-I and -II are bound to specific insulin-like growth factor (IGF)-binding proteins (IGFBPs), of which IGFBP-3 binds the majority of the IGFs. IGFBP-3 levels are regulated by GH and have been suggested to provide additional information on GH secretory capacity compared to IGF-I. However, the diagnostic value of IGFBP-3 is still controversial, perhaps because the quality of the available normative data for IGFBP-3 varies. It has recently been shown that a large number of individuals is required to establish reference ranges for IGF-I that take into account age, sex, body mass index (BMI), and pubertal stage. Therefore, we measured IGFBP-3, IGF-I, IGF-II, IGFBP-1, and IGFBP-2 levels by RIA in 907 healthy children to establish well characterized normative data on IGFBP-3 according to age, sex, and pubertal stage and to study the complex relationship between IGFs and their BPs in puberty. We found that IGFBP-3 levels increase with age in children, with maximal levels in puberty; girls experience peak values approximately 1 yr earlier than boys. Age, sex, height, BMI, and pubertal maturation were all important factors in determining the circulating levels of IGFBP-3, whereas IGF-I levels were unaffected by BMI. Comparison of IGFBP-3 with IGF-1 concentrations revealed that they did not exhibit the same developmental pattern in puberty. IGF-I levels increased to relatively higher levels than IGFBP-3, leading to an increasing molar ratio between IGF-I and IGFBP-3 in puberty, when growth velocity is high. Concomitantly, IGF-II and IGFBP-2 levels were unchanged throughout puberty, whereas IGFBP-1 levels declined with age in prepubertal children, with lowest values in puberty. There was a highly significant correlation between IGF-I and -II and IGFBP-3 on a molar basis (r = 0.84; P < 0.0001). Thus, we speculate that IGFBP-3 is pivotal for circulating IGF bioactivity and that the increase in the molar ratio between IGF-I and IGFBP-3 reflects an increase in free, biologically active IGF-I. In conclusion, we have provided normative data on a large group of healthy individuals and conclude that age, sex, height, BMI, and pubertal maturation have to be taken into account before a single IGFBP-3 value in a growth-retarded child can be evaluated properly.
    [Abstract] [Full Text] [Related] [New Search]