These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Author: Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR. Journal: Cell; 1995 Oct 06; 83(1):129-35. PubMed ID: 7553864. Abstract: The molecular components of the quality control system that rapidly degrades abnormal membrane and secretory proteins have not been identified. The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane protein to which this quality control is stringently applied; approximately 75% of the wild-type precursor and 100% of the delta F508 CFTR variant found in most CF patients are rapidly degraded before exiting from the ER. We now show that this ER degradation is sensitive to inhibitors of the cytosolic proteasome, including lactacystin and certain peptide aldehydes. One of the latter compounds, MG-132, also completely blocks the ATP-dependent conversion of the wild-type precursor to the native folded form that enables escape from degradation. Hence, CFTR and presumably other intrinsic membrane proteins are substrates for proteasomal degradation during their maturation within the ER.[Abstract] [Full Text] [Related] [New Search]