These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic understanding of enamel mineralization under fluoride regime. Author: Aoba T, Taya Y, Sato A, Shimada T, Mura-Galelli MJ. Journal: Connect Tissue Res; 1995; 33(1-3):145-9. PubMed ID: 7554946. Abstract: In order to learn more about how the microenvironment for enamel mineralization is modified by fluoride at low concentrations (0 through 1 ppm) and how excess fluoride retards the degradation and removal of amelogenins, we studied precipitation reactions in an in vitro model utilizing a dialysis chamber. The results showed that, with the limited supply of Ca ions through the ultrafiltration membrane, the solution composition surrounding the seed crystals showed a proximity to the steady-state condition after 12-24 h equilibration. Major findings were that (a) fluoride overcame partially the inhibition of precipitation and growth reactions by enamel proteins and (b), with this accelerating effect of fluoride, the steady-state Ca concentrations in the media surrounding the seed crystals decreased substantially as a function of fluoride concentration. The overall results support the concept that the presence of fluoride in the mineralizing milieu can modify markedly the steady-state concentrations of mineral lattice ions, particularly decreasing free Ca2+ concentrations, which in turn may modulate protease activities in situ.[Abstract] [Full Text] [Related] [New Search]