These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria?
    Author: Hermes-Lima M.
    Journal: Free Radic Biol Med; 1995 Sep; 19(3):381-90. PubMed ID: 7557553.
    Abstract:
    The biosynthetic heme precursor 5-aminolevulinic acid (5-ALA) is a generator of oxygen radicals in vitro and possibly in vivo during pathologic situations of 5-ALA overload, for example, acute intermittent porphyria and saturnism. It has been observed that 5-ALA induces, in isolated rat liver mitochondria, permeabilization of the inner mitochondrial membrane (a phenomenon called permeability transition) as verified by the elimination of the transmembrane electrical potential, Ca2+ release, mitochondrial swelling, and increase in state-4 respiratory rate. The damaging process is primarily attributed to .OH radicals as elucidated by the protection by catalase, superoxide dismutase, and the Fe(II) chelator o-phenanthroline. Ruthenium red, EGTA, and dithiothretol (DTT) have been observed to prevent the action of 5-ALA-generated oxyradicals, suggesting the participation of both Ca2+ and the oxidation of critical thiol membrane proteins in the process of permeability transition. 5-ALA-induced polymerization of thiol membrane proteins has also been demonstrated by SDS-PAGE electrophoresis of the mitochondrial suspensions, a process similar to that observed in mitochondria treated with tert-butyI hydroperoxide. EGTA addition, in contrast with DTT or antioxidants, restores the previously eliminated electrical potential. Furthermore, EGTA prevents the 5-ALA-mediated polimeryzation of thiol proteins. These observations suggest that Ca2+ participates in a later stage of the permeability transition, after the oxidation of the thiol proteins. The effects of 5-ALA-derived oxyradicals in isolated mitochondria could be used as a tool for more general studies of oxidative stress, such as the mitochondrial injury that follows processes of ischemia and reperfusion or xenobiotic poisoning.
    [Abstract] [Full Text] [Related] [New Search]