These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1.
    Author: Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A.
    Journal: J Biol Chem; 1995 Oct 06; 270(40):23780-4. PubMed ID: 7559552.
    Abstract:
    Tumor necrosis factor-alpha (TNF) has been suggested to be the mediator of insulin resistance in infection, tumor cachexia, and obesity. We have previously shown that TNF diminishes insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1). The current work examines potential mechanisms that mediate this event. TNF effect on IRS-1 in Fao hepatoma cells was not associated with a significant reduction in insulin receptor tyrosine kinase activity as measured in vitro but impaired the association of IRS-1 with phosphatidylinositol 3-kinase, localizing TNF impact to IRS-1. TNF did not increase protein-tyrosine phosphatase activity and protein-tyrosine phosphatase inhibition by vanadate did not change TNF effect on IRS-1 tyrosine phosphorylation, suggesting that protein-tyrosine phosphatases are not involved in this TNF effect. In contrast, TNF increased IRS-1 phosphorylation on serine residues, leading to a decrease in its electrophoretic mobility. TNF effect on IRS-1 tyrosine phosphorylation was not abolished by inhibiting protein kinase C using staurosporine, while inactivation of Ser/Thr phosphatases by calyculin A and okadaic acid mimicked it. Our data suggest that TNF induces serine phosphorylation of IRS-1 through inhibition of serine phosphatases or activation of serine kinases other than protein kinase C. This increased serine phosphorylation interferes with insulin-induced tyrosine phosphorylation of IRS-1 and impairs insulin action.
    [Abstract] [Full Text] [Related] [New Search]