These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. I. The role of glutamate.
    Author: Lonart G, Johnson KM.
    Journal: J Pharmacol Exp Ther; 1995 Oct; 275(1):7-13. PubMed ID: 7562597.
    Abstract:
    In this study we compared the effects of two nitrogen monoxide (NO) generators, hydroxylamine and S-nitroso-L-cysteine (NO-CYS), on hippocampal [3H]norepinephrine ([3H]NE) release. A 10-min incubation with hydroxylamine (3-3,000 microM) or NO-CYS (30-10,000 microM) induced a concentration-dependent increase in the basal [3H]NE efflux with EC50 values of approximately 100 microM and 1 mM, respectively. Reduced hemoglobin, a NO scavenger, blocked both hydroxylamine- and NO-CYS-evoked [3H]NE release. Long-term exposure (> or = 25 min) to 100 microM hydroxylamine, or to millimolar concentrations of NO-CYS, evoked a tetrodotoxin-insensitive [3H]NE release. However, a 10-min stimulation with either 100 microM hydroxylamine or 300 microM NO-CYS was sensitive to 0.5 microM tetrodotoxin, a voltage-sensitive sodium channel blocker. This suggested that under these conditions hydroxylamine and NO-CYS induce [3H]NE release indirectly in part, perhaps via releasing an excitatory neurotransmitter. Indeed, kynurenate, a nonselective ionotropic glutamate receptor antagonist, produced an 80% inhibition of the NO generator-evoked [3H]NE release. CGS 19755, a N-methyl-D-aspartate receptor antagonist, had no significant effect, whereas the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptor antagonists, CNQX and GYKI 52446, inhibited the hydroxylamine response by 50%. In synaptosomes, a preparation in which synaptic interactions are nonsignificant, NO-CYS induced a dose-dependent release of both [3H]NE and [3H]glutamate. These data suggest that, in hippocampal slices, NO generators evoke [3H]NE release both directly from noradrenergic terminals and indirectly via releasing glutamate.
    [Abstract] [Full Text] [Related] [New Search]