These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. Author: Korbmacher C, Volk T, Segal AS, Boulpaep EL, Frömter E. Journal: J Membr Biol; 1995 Jul; 146(1):29-45. PubMed ID: 7563035. Abstract: We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262-10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7 +/- 0.5 pS (n = 78) at room temperature. The Pcation/P(anion) ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10(-6) M and depolarization increases channel activity (NPo). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10(-4) M and 10(-3) M, ATP reduces NPo by 23% and 69%, respectively. Furthermore, since ADP (10(-3) M) reduces NPo by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a gamma-phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10(-4) M) or by cGMP-dependent protein kinase (10(-7) M) in the presence of 8-Br-cGMP (10(-5) M) and ATP (10(-4) M). The NSC channel is not sensitive to amiloride (10(-4) M cytoplasmic and/or extracellular) but flufenamic acid (10(-4) M) produces a voltage-dependent block, reducing NPo by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages. We conclude that the NCS channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.[Abstract] [Full Text] [Related] [New Search]