These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase.
    Author: Lee JH, Hoover TR.
    Journal: Proc Natl Acad Sci U S A; 1995 Oct 10; 92(21):9702-6. PubMed ID: 7568201.
    Abstract:
    Rhizobium meliloti C4-dicarboxylic acid transport protein D (DCTD) activates transcription by a form of RNA polymerase holoenzyme that has sigma 54 as its sigma factor (referred to as E sigma 54). DCTD catalyzes the ATP-dependent isomerization of closed complexes between E sigma 54 and the dctA promoter to transcriptionally productive open complexes. Transcriptional activation probably involves specific protein-protein interactions between DCTD and E sigma 54. Interactions between sigma 54-dependent activators and E sigma 54 are transient, and there has been no report of a biochemical assay for contact between E sigma 54 and any activator to date. Heterobifunctional crosslinking reagents were used to examine protein-protein interactions between the various subunits of E sigma 54 and DCTD. DCTD was crosslinked to Salmonella typhimurium sigma 54 with the crosslinking reagents succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate and N-hydroxysulfosuccinimidyl-4-azidobenzoate. Cys-307 of sigma 54 was identified by site-directed mutagenesis as the residue that was crosslinked to DCTD. DCTD was also crosslinked to the beta subunit of Escherichia coli core RNA polymerase with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, but not with N-hydroxysulfosuccinimidyl-4-azidobenzoate. These data suggest that interactions of DCTD with sigma 54 and the beta subunit may be important for transcriptional activation and offer evidence for interactions between a sigma 54-dependent activator and sigma 54, as well as the beta subunit of RNA polymerase.
    [Abstract] [Full Text] [Related] [New Search]