These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CFTR mediates electrogenic chloride secretion in mouse inner medullary collecting duct (mIMCD-K2) cells. Author: Vandorpe D, Kizer N, Ciampollilo F, Moyer B, Karlson K, Guggino WB, Stanton BA. Journal: Am J Physiol; 1995 Sep; 269(3 Pt 1):C683-9. PubMed ID: 7573398. Abstract: Previously we demonstrated that the inner medullary collecting duct cell line mIMCD-K2 secretes Cl- by an electrogenic mechanism [N. L. Kizer, B. Lewis, and B. A. Stanton. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F347-F355, 1995; N. L. Kizer, D. Vandorpe, B. Lewis, B. Bunting, J. Russell, and B. A. Stanton. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F854-F861, 1995]. The goal of the present study was to characterize the Cl- channel responsible for adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated Cl- secretion. To this end, using the patch-clamp technique, we measured Cl- currents. In whole cell patch-clamp experiments, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) activated Cl- currents that were time and voltage independent, inhibited by diphenylamine 2-carboxylate (DPC), and had a linear current-voltage (I-V) relation. In cell-attached patches of the apical membrane, we identified 7-pS Cl- channels that were stimulated by CPT-cAMP. In inside-out patches with Cl- in the pipette and bath solutions, Cl- currents had a linear I-V relation. The halide permeability sequence was PCl = PBr > PI. The Cl- channel inhibitors DPC, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, and glibenclamide blocked the 7-pS Cl- channel, whereas 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid was ineffective. By reverse transcriptase polymerase chain reaction, we isolated a partial cDNA clone encoding the cystic fibrosis transmembrane conductance regulator in mIMCD-K2 cells. We conclude that cAMP stimulates electrogenic Cl- secretion in inner medullary collecting duct cells by activating cystic fibrosis transmembrane conductance regulator Cl- channels.[Abstract] [Full Text] [Related] [New Search]