These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Author: Vazquez G, Boland R, de Boland AR. Journal: Biochim Biophys Acta; 1995 Oct 19; 1269(1):91-7. PubMed ID: 7578277. Abstract: We have previously reported that the calciotropic hormone 1,25(OH)2-vitamin D3 stimulates influx of Ca2+ into cultured rat and embryonic chick myoblasts via voltage sensitive Ca(2+)-channels. In the present study, we show that this effect of 1,25(OH)2D3 requires the mediation of the adenylylcyclase signalling system since the hormone-dependent Ca2+ influx is abolished by specific inhibitors of adenylylcyclase and protein kinase A and mimicked by forskolin and dibutyryl cAMP. 1,25(OH)2D3-stimulated elevations in cellular cAMP paralleled increases in Ca2+ uptake, further suggesting a coupling of adenylylcyclase activation and calcium influx. Fluoride and GTP gamma S mimicked 1,25(OH)2D3-stimulation of calcium influx while GDP beta S suppressed the effect of the hormone. Cholera toxin and Bordetella pertussis toxin both increased 45Ca2+ uptake in rat and chick myoblasts. The hormone further increased cholera toxin actions, but was unable to modify pertussis toxin-induced 45Ca2+ uptake, suggesting a similar target of action for pertussis toxin and 1,25(OH)2D3. Incubation of microsomal membranes with the sterol (10 nM, 2 min) markedly displaces (-32%) [35S]GTP gamma S binding to the membranes. ADP-ribosylation of the pertussis toxin-sensitive 41 kDa substrate was significantly increased (+40%) in 1,25(OH)2D3-pretreated cells. These results suggest that 1,25(OH)2D3-stimulated influx of Ca2+ into rat and embryonic chick cultured myoblasts sequentially requires inhibition of a pertussis toxin-sensitive G protein, accumulation of cAMP and activation of dihydropyridine-sensitive Ca(2+)-channels through PKA-mediated phosphorylation events.[Abstract] [Full Text] [Related] [New Search]