These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dehalogenation of 4-chlorobenzoate. Characterisation of 4-chlorobenzoyl-coenzyme A dehalogenase from Pseudomonas sp. CBS3. Author: Löffler F, Lingens F, Müller R. Journal: Biodegradation; 1995 Sep; 6(3):203-12. PubMed ID: 7579994. Abstract: Pseudomonas sp. CBS3 is capable of growing with 4-chlorobenzoate as sole source of carbon and energy. The removal of the chlorine of 4-chlorobenzoate is performed in the first degradation step by an enzyme system consisting of three proteins. A 4-halobenzoate-coenzyme A ligase activates 4-chlorobenzoate in a coenzyme A, ATP and Mg2+ dependent reaction to 4-chlorobenzoyl-coenzyme A. This thioester intermediate is dehalogenated by the 4-chlorobenzoyl-coenzyme A dehalogenase. Finally coenzyme A is split off by a 4-hydroxybenzoyl-CoA thioesterase to form 4-hydroxybenzoate. The involved 4-chlorobenzoyl-coenzyme A dehalogenase was purified to apparent homogeneity by a five-step purification procedure. The native enzyme had an apparent molecular mass of 120,000 and was composed of four identical polypeptide subunits of 31 kDa. The enzyme displayed an isoelectric point of 6.7. The maximal initial rate of catalysis was achieved at pH 10 at 60 degrees C. The apparent Km value for 4-chlorobenzoyl-coenzyme A was 2.4-2.7 microM. Vmax was 1.1 x 10(-7) M sec-1 (2.2 mumol min-1 mg-1 of protein). The NH2-terminal amino acid sequence was determined. All 4-halobenzoyl-coenzyme A thioesters, except 4-fluorobenzoyl-coenzyme A, were dehalogenated by the 4-chlorobenzoyl-CoA dehalogenase.[Abstract] [Full Text] [Related] [New Search]