These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2.
    Author: Cunningham E, Thomas GM, Ball A, Hiles I, Cockcroft S.
    Journal: Curr Biol; 1995 Jul 01; 5(7):775-83. PubMed ID: 7583124.
    Abstract:
    BACKGROUND: Phosphatidylinositol transfer protein (PI-TP), which has the ability to transfer phosphatidylinositol (PI) from one membrane compartment to another, is required in the inositol lipid signalling pathway through phospholipase C-beta (PLC-beta) that is regulated by GTP-binding protein(s) in response to extracellular signals. Here, we test the hypothesis that the principal role of PI-TP is to couple sites of lipid hydrolysis to sites of synthesis, and so to replenish depleted substrate for PLC-beta. RESULTS: We have designed an experimental protocol that takes advantage of the different rates of release of endogenous PI-TP and PLC-beta from HL60 cells permeabilized with streptolysin O. We have examined the kinetics of stimulated inositol lipid hydrolysis in cells depleted of PI-TP, but not of endogenous PLC-beta, in the presence and absence of exogenous PI-TP. Linear time-courses were observed in the absence of any added protein, and the rate was accelerated by PI-TP using either guanosine 5'[gamma-thio]-triphosphate (GTP gamma S) or the receptor-directed agonist fMetLeuPhe as activators. In addition, depletion from the cells of both PI-TP and PLC-beta isoforms by extended permeabilization (40 minutes) allowed us to control the levels of PLC-beta present in the cells. Once again, PI-TP increased the rates of reactions. To identify whether the role of PI-TP was to make available the substrate phosphatidylinositol bisphosphate (PIP2) for the PLC, we examined the synthesis of PIP2 in cells depleted of PI-TP. We found that PI-TP was essential for the synthesis of PIP2. CONCLUSIONS: The predicted function of PI-TP in inositol lipid signalling is the provision of substrate for PLC-beta from intracellular sites where PI is synthesized. We propose that PI-TP is in fact a co-factor in inositol lipid signalling and acts by interacting with the inositol lipid kinases. We hypothesize that the preferred substrate for PLC-beta is not the lipid that is resident in the membrane but that provided through PI-TP.
    [Abstract] [Full Text] [Related] [New Search]