These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene.
    Author: Garrett JE, Tamir H, Kifor O, Simin RT, Rogers KV, Mithal A, Gagel RF, Brown EM.
    Journal: Endocrinology; 1995 Nov; 136(11):5202-11. PubMed ID: 7588259.
    Abstract:
    Calcitonin (CT) secretion by parafollicular cells of the thyroid (C cells) is regulated by small changes in the concentration of extracellular calcium ([Ca2+]e). Elevation of [Ca2+]e elicits a rise in the C cell cytoplasmic calcium concentration and stimulates CT release. The molecular entity through which C cells detect changes in [Ca2+]e and modulate hormone secretion is unknown. Recently, an extracellular calcium-sensing receptor (CaR) complementary DNA was isolated from bovine parathyroid gland. To assess whether parathyroid cells and C cells use similar mechanisms to detect changes in ambient Ca2+, rat, human, and sheep C cells were examined for expression of the parathyroid CaR or a related receptor isoform. Reverse transcription-polymerase chain reaction analysis identified CaR transcripts in rat and human thyroid gland. Northern blot analysis demonstrated CaR messenger RNA (mRNA) in rat thyroid gland, a human medullary thyroid carcinoma (MTC) isolate, and a highly enriched preparation of sheep C cells. Rat MTC 44-2 cells, a cell line responsive to changes in [Ca2+]e, express abundant levels of CaR mRNA. Human TT cells, a C cell line lacking the extracellular calcium-sensing function, have undetectable levels of CaR mRNA by Northern blot analysis. Western blot analysis, using antiserum specific to the parathyroid CaR, detected CaR protein in rMTC 44-2, but not TT cells. Immunostaining of both dispersed sheep C cells and rat thyroid gland sections identified C cell-specific expression of the CaR protein, and in situ hybridization analysis confirmed the C cell-specific expression of CaR mRNA in the intact rat thyroid. The nucleotide sequence of the coding region of the rMTC 44-2 CaR transcripts was found to encode the same CaR protein as that expressed in the parathyroid and kidney. The results demonstrate that C cells express the same extracellular calcium-sensing receptor that is found in parathyroid and kidney, and the presence of this receptor protein in C cell lines correlates with the extracellular calcium-sensing function. This CaR is likely to represent the primary molecular entity through which C cells detect changes in [Ca2+]e and control CT release, suggesting that activation of the same receptor can either stimulate or inhibit hormone secretion in different cell types.
    [Abstract] [Full Text] [Related] [New Search]