These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and characterization of a hepatoma cell-specific enhancer in the mouse multidrug resistance mdr1b promoter. Author: Song R, Ikeguchi M, Zhou G, Kuo MT. Journal: J Biol Chem; 1995 Oct 27; 270(43):25468-74. PubMed ID: 7592715. Abstract: The expression of multidrug resistance/P-glycoprotein genes mdr1b(mdr1) and mdr1a(mdr3) is elevated during hepatocarcinogenesis. To investigate the regulation of mdr1b gene expression, we used transient transfection expression assays of reporter constructs containing various 5'-mdr1b flanking sequences in hepatoma and non-hepatoma cells. We found that nucleotides -233 to -116 preferentially enhanced the expression of reporter gene in mouse hepatoma cell lines in an orientation- and promoter context-independent manner. DNase I footprinting using nuclear extracts prepared from hepatoma and non-hepatoma cells identified four protein binding sites at nucleotides -205 to -186 (site A), -181 to -164 (site B), -153 to -135 (site C), and -128 to -120 (site D). Further analyses revealed that, while site B alone played a major part for the enhancer function, sites A and B combined conferred full enhancer activity. Site-directed mutagenesis results also supported these results. Gel retardation experiments using oligonucleotide competitors revealed that the site B contains a dominant binding protein. This is the first report demonstrating a cell type-specific enhancer in the mdr locus. The role of this enhancer in the activation of mdr1b gene during hepatocarcinogenesis is discussed.[Abstract] [Full Text] [Related] [New Search]