These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor.
    Author: Lerner EC, Qian Y, Hamilton AD, Sebti SM.
    Journal: J Biol Chem; 1995 Nov 10; 270(45):26770-3. PubMed ID: 7592913.
    Abstract:
    Prenylation of the carboxyl-terminal CAAX (C, cysteine; A, aliphatic acid; and X, any amino acid) of Ras is required for its biological activity. We have designed a CAAX peptidomimetic, GGTI-287, which is 10 times more potent toward inhibiting geranylgeranyltransferase I (GGTase I) in vitro (IC50 = 5 nM) than our previously reported farnesyltransferase inhibitor, FTI-276. In whole cells, the methyl ester derivative of GGTI-287, GGTI-286, was 25-fold more potent (IC50 = 2 microM) than the corresponding methyl ester of FTI-276, FTI-277, toward inhibiting the processing of the geranylgeranylated protein Rap1A. Furthermore, GGTI-286 is highly selective for geranylgeranylation over farnesylation since it inhibited the processing of farnesylated H-Ras only at much higher concentrations (IC50 > 30 microM). While the processing of H-Ras was very sensitive to inhibition by FTI-277 (IC50 = 100 nM), that of K-Ras4B was highly resistant (IC50 = 10 microM). In contrast, we found the processing of K-Ras4B to be much more sensitive to GGTI-286 (IC50 = 2 microM). Furthermore, oncogenic K-Ras4B stimulation inhibited potently by GGTI-286 (IC50 = 1 microM) but weakly by FTI-277 (IC50 = 30 microM). Significant inhibition of oncogenic K-Ras4B stimulation of MAP kinase by GGTI-286 occurred at concentrations (1-3 microM) that did not inhibit oncogenic H-Ras stimulation of MAP kinase. The data presented in this study provide the first demonstration of selective disruption of oncogenic K-Ras4B processing and signaling by a CAAX peptidomimetic. The higher sensitivity of K-Ras4B toward a GGTase I inhibitor has a tremendous impact on future research directions targeting Ras in anticancer therapy.
    [Abstract] [Full Text] [Related] [New Search]