These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and subcellular distribution of muscarinic acetylcholine receptor-related proteins in rabbit corneal and Chinese hamster ovary cells. Author: Lind GJ, Cavanagh HD. Journal: Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1492-507. PubMed ID: 7601630. Abstract: PURPOSE: The authors examined the muscarinic acetylcholine receptor (mAChR) subtypes in rabbit corneal epithelial and endothelial cells and in subcellular fractions of these cell types. A Chinese hamster ovary (CHO) cell line (nontransfected CHO K1), expected to be a negative control, also was investigated. METHODS: Whole cell homogenate and subcellular fractions were labeled with the covalent-binding, mAChR-specific ligand [3H]propylbenzilylcholine mustard ([3H]PrBChM) and were analyzed by a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, or SDS-PAGE, and autoradiography. RESULTS: A pattern of multiple PrBChM-binding proteins was detected in homogenates of corneal epithelial and endothelial cells and, surprisingly, in the CHO cells. Ligand binding to all of these proteins is inhibited by the mAChR antagonists atropine sulfate and quinculidinyl benzilate. The sizes of four of the labeled protein bands are the same as the molecular masses deduced from mAChR sequence data for subtypes m3, m4, m5, and either m1 or m2. One band of 47 kd, smaller than any reported sequence, was also observed. Two of the [3H]PrBChM-binding proteins, one at 59 to 62 kd (corresponding to m5 in size) and another at 47 kd, clearly were present when highly purified nuclei were analyzed. CONCLUSIONS: The presence of multiple mAChR-like proteins at low concentrations in these disparate cell types suggests the possibility of a more general regulatory role for this type of receptor than was considered previously. Combined with other reports, the identification of proteins with the characteristics of mAChRs in purified nuclei adds support to data indicating the likelihood of G-protein-coupled signaling across the nuclear envelope.[Abstract] [Full Text] [Related] [New Search]