These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. Author: Manickan E, Rouse RJ, Yu Z, Wire WS, Rouse BT. Journal: J Immunol; 1995 Jul 01; 155(1):259-65. PubMed ID: 7602102. Abstract: Plasmid DNA encoding proteins represent a convenient novel approach to vaccination. We have investigated this "genetic immunization" approach as a means to protect against herpes simplex virus (HSV) infection using a mouse zosteriform model that mimics several aspects of reactivated HSV infection of humans. After i.m. immunization with plasmid DNA-encoding glycoprotein B (gB), (pc-gB), 80% of BALB/c mice were completely protected and lesions were delayed in the remaining animals. Upon pc-gB vaccination, the animals developed both gB- and HSV-specific IgG Ab response and the isotype examination revealed a predominance of IgG2a. These mice also have low levels (1/16) of HSV-neutralizing Abs. Immune splenocytes obtained from pc-gB-immunized mice, when restimulated in vitro with HSV resulted in production of type 1 cytokines. Evidence for CD(8+)-mediated cytotoxic T lymphocyte response was equivocal. Protection could be adoptively transferred to nude mice recipients by CD4+ T cells from pc-gB-immunized mice but not by CD8+ T cells. Our results demonstrate that genetic immunization is a potent means of inducing protection against HSV and that the mechanism of immunity responsible for clearing virus from cutaneous sites is principally by CD4+ T cells. It is likely that these cells are Th1 cells because type 1 cytokines were the major cytokines detected upon in vitro Ag stimulation.[Abstract] [Full Text] [Related] [New Search]