These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: All-trans- and 9-cis-retinoic acid inhibit growth of normal human and murine B cell precursors.
    Author: Fahlman C, Jacobsen SE, Smeland EB, Lømo J, Naess CE, Funderud S, Blomhoff HK.
    Journal: J Immunol; 1995 Jul 01; 155(1):58-65. PubMed ID: 7602122.
    Abstract:
    In the present paper we demonstrate that physiologic levels (10 nM) of both all-trans- and 9-cis-retinoic acid (RA) are potent inhibitors of the growth of human as well as murine B cell precursors in vitro. Ten nanomolar concentrations of all-trans- and 9-cis-RA reduced the DNA synthesis ([3H]thymidine uptake) of human B cell precursors (CD19+ IgM-) stimulated with O-tetradecanoylphorbol-13-acetate and ionomycin by approximately 55% and 70%, respectively. Human B cell precursors stimulated with low m.w. B cell growth factor were also inhibited by RA. Ten nanomolar concentrations of either isoform of RA reduced DNA synthesis by approximately 50%. No effect of RA on differentiation to sIgM positive cells was noted. The potent growth-inhibiting effect of RA on human B cell precursors was confirmed in the murine cell system. B lymphopoiesis from murine hematopoietic precursors (Lin-B220(+)-containing cells) was induced by stimulation with IL-7. Concentrations of all-trans- and 9-cis-RA as low as 10 pM reduced the colony-forming ability of the IL-7-stimulated Lin-B220(+)-containing cells. Ten nanomolar concentrations of either isoform reduced colony formation by approximately 60%. RA was not toxic to the cells, as the inhibition of colony formation after 24 h was reversible at concentrations as high as 1 microM. The growth-inhibiting effect of RA was directly mediated, as revealed by single cell analysis of the Lin-B220(+)-containing cells. Thus, vitamin A appears to have an important role in regulation of B lymphopoiesis.
    [Abstract] [Full Text] [Related] [New Search]