These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Block of non-L-, non-N-type Ca2+ channels in rat insulinoma RINm5F cells by omega-agatoxin IVA and omega-conotoxin MVIIC.
    Author: Magnelli V, Pollo A, Sher E, Carbone E.
    Journal: Pflugers Arch; 1995 Apr; 429(6):762-71. PubMed ID: 7603830.
    Abstract:
    The high-voltage-activated (HVA) Ba2+ currents of rat insulinoma RINm5F cells insensitive to dihydropyridines (DHP) and omega-conotoxin GVIA (omega-CTx-GVIA) have been studied for their sensitivity to omega-agatoxin-IVA (omega-Aga-IVA) and omega-CTx-MVIIC. Blockade of HVA currents by omega-Aga-IVA was partial (mean 24%), reversible and saturated around 350 nM (half block approximately 60 nM). Blockade by omega-CTx-MVIIC was more potent (mean 45%), partly irreversible and saturated above 3 microM. The effects of both toxins were additive with that of nifedipine (5 microM) and were more pronounced at positive potentials. omega-Aga-IVA action was additive with that of omega-CTx-GVIA (3 microM) but was largely prevented by cell pre-treatment with omega-CTx-MVIIC (3 microM). In contrast, omega-CTx-MVIIC block was attenuated by omega-CTx-GVIA treatment (approximately 15%), suggesting that omega-CTx-MVIIC blocks the N-type (approximately 15%) and the non-L-, non-N-type channel sensitive to omega-Aga-IVA (approximately 30%). Consistent with this, cells deprived of most non-L-type channels by pre-incubation with omega-CTx-GVIA and omega-CTx-MVIIC exhibited predominant L-type currents that activated at more negative potentials than in normal cells (-30 mV in 5 mM Ba2+) and were effectively depressed by nifedipine (maximal block of 95% from -30 mV to +40 mV). Our results suggest that, besides L- and N-type channels, insulin-secreting RINm5F cells possess also a non-L-, non-N-type channel that contributes significantly to the total current (approximately 30%). Although the pharmacology of this channel is similar to Q-type and alpha 1 class A channels, its range of activation (> -20 mV) and its slow inactivation time course resemble more that of N- and P-type channels. The channel is therefore referred to as "Q-like".
    [Abstract] [Full Text] [Related] [New Search]