These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neonatal ischemic neuroprotection by modest hypothermia is associated with attenuated brain acidosis.
    Author: Laptook AR, Corbett RJ, Burns D, Sterett R.
    Journal: Stroke; 1995 Jul; 26(7):1240-6. PubMed ID: 7604422.
    Abstract:
    BACKGROUND AND PURPOSE: A 2.9 degrees C reduction in the intraischemic rectal temperature of neonatal piglets is associated with less brain damage compared with animals with normothermic rectal temperatures. This investigation studied one potential mechanism for this observation: better maintenance of energy stores and less brain acidosis secondary to reduced metabolic activity associated with modest hypothermia. METHODS: 31P MR spectroscopy was used to study piglets before, during, and after 15 minutes of partial brain ischemia with intraischemic rectal temperatures of either 38.3 +/- 0.4 degrees C (n = 10, normothermic) or 35.4 +/- 0.5 degrees C (n = 10, hypothermic). Animals were followed up for up to 72 hours after ischemia and were evaluated clinically and by brain histology. RESULTS: Values for pHi remained 0.15 to 0.20 pH units greater in modestly hypothermic than in normothermic piglets during ischemia and the initial 30 minutes after ischemia (P = .049, group effect). Phosphocreatine, beta-ATP, and inorganic phosphorus were similar between groups. The relationship between the intraischemic energy state and subsequent clinical evidence of brain damage (irrespective of group assignment) revealed lower pHi over the last 7 minutes of ischemia for abnormal compared with normal piglets (5.98 +/- 0.22 versus 6.39 +/- 0.24, respectively; P = .002). In contrast, intraischemic beta-ATP (41 +/- 19% versus 57 +/- 21% of control) and inorganic phosphorus (273 +/- 31% versus 224 +/- 92% of control) for abnormal and normal piglets, respectively, did not differ between groups. CONCLUSIONS: Intraischemic modest hypothermia attenuates the severity of brain acidosis during and 30 minutes after ischemia compared with normothermic animals and supports the concept that attenuated brain acidosis is a potential mechanism by which hypothermia may reduce ischemic brain damage.
    [Abstract] [Full Text] [Related] [New Search]