These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modified substrates as probes for studying uracil-DNA glycosylase. Author: Kubareva EA, Volkov EM, Vinogradova NL, Kanevsky IA, Oretskaya TS, Kuznetsova SA, Brevnov MG, Gromova ES, Nevinsky GA, Shabarova ZA. Journal: Gene; 1995 May 19; 157(1-2):167-71. PubMed ID: 7607485. Abstract: In order to study the mechanism of action of uracil-DNA glycosylase (UDG) from human placenta, single-stranded (ss) and double-stranded (ds) oligodeoxyribonucleotides (oligos), containing deoxyuridine (dU) and a wide variety of their analogs were used. It was shown that UDG has a twofold preference for ss oligos over ds oligos and a twofold preference for intermolecular duplexes over similar hairpin-like duplexes. The replacement of dU with 1-(beta-D-2'-deoxy-threo-pentofuranosil)uracil (xU) or 1-(beta-D-3'-deoxy-threo-pentofuranosil)uracil (tU), which results in a change in sugar hydroxyl configuration, has no influence on UDG binding to such substrates, but inhibits uracil removal. A oligo containing 2'-deoxy-2'-fluorouridine (flU), with a 3'-endo conformation of modified sugar is recognized by UDG 100-200-fold less efficiently than the natural ones. F or Br atoms or a methyl group were introduced at position 5 of a dU residue in an oligo. It was shown that the nature of a substituent at this position is essential for UDG function.[Abstract] [Full Text] [Related] [New Search]