These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibitory effect on the lipolysis-stimulated receptor of the 39-kDa receptor-associated protein.
    Author: Troussard AA, Khallou J, Mann CJ, André P, Strickland DK, Bihain BE, Yen FT.
    Journal: J Biol Chem; 1995 Jul 21; 270(29):17068-71. PubMed ID: 7615497.
    Abstract:
    Adenovirus vector-mediated transfer of the receptor-associated protein (RAP) gene into low density lipoprotein (LDL) receptor-deficient mice was shown to achieve plasma concentrations ranging between 20 and 200 micrograms/ml and to result in the accumulation of remnant lipoproteins (Willnow, T. E., Sheng, Z., Ishibashi, S., and Herz, J. (1994) Science 264, 1471-1474). Both this finding and the observation that in addition to various other members of the LDL receptor gene family, RAP binds to a yet unidentified protein of apparent molecular mass of 105 kDa prompted us to examine the effect of high concentrations of RAP on the lipolysis-stimulated receptor (LSR). LSR is a receptor distinct from the LDL receptor and the LDL receptor-related protein and is capable of binding apoB and apoE when activated by free fatty acids. Data reported here show that in fibroblasts isolated from a subject homozygous for familial hypercholesterolemia, RAP fusion protein inhibited LSR-mediated binding of 125I-LDL and the subsequent internalization and degradation of the particles. Studies on the interaction of RAP with LSR in isolated rat liver membranes revealed that at concentrations > or = 10 micrograms/ml, RAP inhibited in a dose-dependent manner the binding of LDL to LSR; half-maximum inhibition was obtained with 20 micrograms/ml RAP. Ligand blotting studies revealed that RAP bound directly to two rat liver membrane proteins of apparent molecular masses identical to those that bind 125I-LDL after preincubation with oleate. However, unlike LDL, binding of 125I-RAP to LSR did not require preincubation with oleate. Preincubation of nitrocellulose membranes with an excess of unlabeled RAP fusion protein decreased oleate-induced binding of 125I-LDL to LSR candidate proteins, whereas preincubation with excess unlabeled LDL was unable to prevent the subsequent binding of 125I-RAP to the LSR proteins. Both the latter data and analysis of the mechanism of inhibition were consistent with the RAP inhibitory effect on LSR being achieved by interference with a site distinct from the oleate-induced LDL binding site. In conclusion, this study shows that at concentrations reported to delay chylomicron remnant removal in LDL receptor-deficient mice, RAP exerted a significant inhibitory effect on LSR.
    [Abstract] [Full Text] [Related] [New Search]