These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular cholesterol efflux mediated by cyclodextrins.
    Author: Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GH.
    Journal: J Biol Chem; 1995 Jul 21; 270(29):17250-6. PubMed ID: 7615524.
    Abstract:
    In this study, we compared cholesterol efflux mediated by either high density lipoproteins (HDL3) or beta-cyclodextrins, cyclic oligosaccharides that are able to dissolve lipids in their hydrophobic core. beta-Cyclodextrin, 2-hydroxypropyl-beta-cyclodextrin, and methyl-beta-cyclodextrin at 10 mM induced the release of 50-90% of L-cell [3H]cholesterol after 8 h of incubation, with a major portion of this cholesterol being released in the first 1-2 h of incubation. The cholesterol efflux kinetics are different if cells are incubated with HDL3, which induces a relatively constant rate of release of cholesterol throughout an 8-h incubation. Cholesterol efflux to cyclodextrins was much greater than phospholipid release. To test the hypothesis that maximal efflux rate constants for a particular cell are independent of the type of acceptor, we estimated the maximal rate constants for efflux (Vmax) of cellular cholesterol from L-cells, Fu5AH cells, and GM3468A fibroblasts. The rate constant for HDL3-mediated efflux varied among cell lines in the order Fu5AH > L-cells > fibroblasts. However, these differences were not evident when cyclodextrins were used as cholesterol acceptors. The estimated Vmax values for cyclodextrin-mediated efflux were 3.5-70-fold greater than for HDL3 for the three cell lines. The very high efficiency of cyclodextrins in stimulating cell cholesterol efflux suggests that these compounds can be used in two general ways for studies of atherosclerosis: 1) as research tools to probe mechanisms of cholesterol transport and aspects of membrane structure or 2) as potential pharmacological agents that could modify in vivo cholesterol metabolism and influence the development of the atherosclerotic plaque.
    [Abstract] [Full Text] [Related] [New Search]