These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hormone-induced meiotic maturation in Xenopus oocytes occurs independently of p70s6k activation and is associated with enhanced initiation factor (eIF)-4F phosphorylation and complex formation.
    Author: Morley SJ, Pain VM.
    Journal: J Cell Sci; 1995 Apr; 108 ( Pt 4)():1751-60. PubMed ID: 7615690.
    Abstract:
    Hormone-induced meiotic maturation of the Xenopus oocyte is regulated by complex changes in protein phosphorylation. It is accompanied by a stimulation in the rate of translation, manifest at the level of polypeptide chain initiation. At laser times in the maturation process, this reflects an increased ability for mRNA to interact with the 40 S ribosomal subunit. In mammalian cells there is growing evidence for the regulation of translation by phosphorylation of ribosomal protein S6 and of initiation factors responsible for the binding of mRNA to ribosomes. In this report, we show that although the 70 kDa form of S6 kinase is activated within 1.5 hours in response to progesterone or insulin, a time critical for protein synthesis, its activation is not required for hormone-induced stimulation of translation rates or maturation. In response to progesterone, activation of translation occurs in parallel with enhanced phosphate labelling of eIF-4 alpha and eIF-4 gamma and eIF-4F complex formation, events which are thought to facilitate the interaction of eIF-4F with the mRNA cap structure. However, with insulin, activation of translation occurs prior to detectable de novo phosphorylation of eIF-4F, although a small enhancement of turnover of phosphate on eIF-4 alpha may occur at this early time. With either hormone, enhanced phosphate labelling of eIF-4 alpha is shown to reflect activation of eIF-4 alpha kinase(s), which coincides temporally with activation of p42 MAP and p90rsk kinases. The possible role of initiation factor modification on increased translation rates during meiotic maturation is discussed.
    [Abstract] [Full Text] [Related] [New Search]