These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3',5'-cyclic monophosphate accumulation in Chinese hamster ovary cells.
    Author: Burford NT, Tobin AB, Nahorski SR.
    Journal: J Pharmacol Exp Ther; 1995 Jul; 274(1):134-42. PubMed ID: 7616390.
    Abstract:
    Agonist-stimulated accumulation of inositol 1,4,5-trisphosphate and adenosine 3',5'-cyclic monophosphate (cAMP) were measured in Chinese hamster ovary (CHO) cells expressing m1 (CHO-m1), m2 (CHO-m2) or m3 (CHO-m3) muscarinic receptors. At similar levels of expression (approximately 1000 fmol of receptor per mg of protein), m1 and m3 muscarinic receptors mediated similar carbachol-stimulated, biphasic accumulation of inositol-1,4,5-trisphosphate in intact cells and similar release of preloaded 45Ca++ from permeabilized cells. However, CHO-m1 cells produced a 4-fold greater agonist-stimulated accumulation of cAMP compared with CHO-m3 cells, in a pertussis toxin-insensitive manner. CHO-m2 cells (expressing approximately 100 fmol of receptor per mg of protein) coupled to the inhibition of adenylyl cyclase in a pertussis toxin-sensitive manner. However, after pertussis toxin pretreatment, agonist stimulation mediated a 50% potentiation of forskolin-stimulated cAMP accumulation. Muscarinic m1, m2 and m3 receptor-mediated stimulation of cAMP accumulation, correlated with the apparent binding affinity of carbachol for these receptors, suggesting a lack of an apparent receptor reserve for this response. Reducing the level of m3 muscarinic receptors by approximately 50% resulted in no detectable stimulation of cAMP accumulation. The results suggest that m1 and m3 muscarinic receptors, expressed at similar levels in CHO cells, couple to the activation of phospholipase C with similar efficiency. However, m1 muscarinic receptors couple with greater efficiency to the stimulation of adenylyl cyclase compared with m3 muscarinic receptors. Muscarinic m1, m2 and m3 receptor-mediated cAMP accumulation in CHO cells does not appear to be a consequence of phospholipase C activation.
    [Abstract] [Full Text] [Related] [New Search]