These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional mapping of the surface residues of human thrombin.
    Author: Tsiang M, Jain AK, Dunn KE, Rojas ME, Leung LL, Gibbs CS.
    Journal: J Biol Chem; 1995 Jul 14; 270(28):16854-63. PubMed ID: 7622501.
    Abstract:
    Utilizing site-directed mutagenesis, 77 charged and polar residues that are highly exposed on the surface of human thrombin were systematically substituted with alanine. Functional assays using thrombin mutants identified residues that were required for the recognition and cleavage of the procoagulant substrate fibrinogen (Lys21, Trp50, Lys52, Asn53 + Thr55, Lys65, His66, Arg68, Tyr71, Arg73, Lys77, Lys106 + Lys107, Asp193 + Lys196, Glu202, Glu229, Arg233, Asp234) and the anticoagulant substrate protein C (Lys21, Trp50, Lys65, His66, Arg68, Tyr71, Arg73, Lys77, Lys106 + Lys107, Glu229, Arg233), interactions with the cofactor thrombomodulin (Gln24, Arg70) and inhibition by the thrombin aptamer, an oligonucleotide-based thrombin inhibitor (Lys65, His66, Arg70, Tyr71, Arg73). Although there is considerable overlap between the functional epitopes, distinct and specific residues with unique functions were identified. When the functional residues were mapped on the surface of thrombin, they were located on a single hemisphere of thrombin that included both the active site cleft and the highly basic exosite 1. No functional residues were located on the opposite face of thrombin. Residues with procoagulant or anticoagulant functions were not spatially separated but interdigitated with residues of opposite or shared function. Thus thrombin utilizes the same general surface for substrate recognition regardless of substrate function although the critical contact residues may vary.
    [Abstract] [Full Text] [Related] [New Search]