These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lysozyme regulates LPS-induced interleukin-6 release in mice.
    Author: Takada K, Ohno N, Yadomae T.
    Journal: Circ Shock; 1994 Dec; 44(4):169-74. PubMed ID: 7628057.
    Abstract:
    Bacterial lipopolysaccharide (LPS) stimulates the production and release of endogenous mediators [e.g., tumor necrosis factor (TNF), interleukins-1 and -6 (IL-1 and IL-6), and Platelet Activating Factor [PAF] responsible for the pathophysiologic changes and the mortality associated with sepsis. We recently demonstrated that lysozyme (LZM) bound to LPS (LZM-LPS complex) suppresses LPS-induced tumor necrosis factor-alpha (TNF-alpha) production in vivo. In the present study, we investigated the effect of LZM-LPS complex formation on LPS-induced IL-6 production, both in vitro and in vivo. With the addition of LZM-LPS complex, TNF-alpha and IL-6 release was significantly reduced compared with that by LPS in a dose-dependent manner in mouse macrophage-like cells, RAW264.7. IL-6 production in serum by LPS in carrageenan (CAR)-primed mice peaked at 2 hr following injection. LZM-LPS and LZM-Escherichia coli cell complex (as 1 microgram of LPS per mouse) released significantly reduced concentrations of IL-6 in serum (P < 0.01 and P < 0.001 versus CAR-pretreated LPS- or cell-injected mice). These results emphasize the important role of LZM in vivo in the neutralization of endotoxin. However, in the case of IL-6, by administration of a lethal dose of LPS (as 100 micrograms of LPS per mouse), the IL-6 level was reduced by LZM, but a significant concentration of IL-6 was still released; although the TNF- alpha concentration was negligible in this experimental condition. Thus, it is suggested that LZM might regulate the systemic inflammation induced during Gram-negative bacterial infections by inhibiting the release of cytokines in serum.
    [Abstract] [Full Text] [Related] [New Search]