These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biosynthesis of the macrolide oleandomycin by Streptomyces antibioticus. Purification and kinetic characterization of an oleandomycin glucosyltransferase. Author: Quirós LM, Salas JA. Journal: J Biol Chem; 1995 Aug 04; 270(31):18234-9. PubMed ID: 7629141. Abstract: The oleandomycin (OM) producer, Streptomyces antibioticus, possesses a mechanism involving two enzymes for the intracellular inactivation and extracellular reactivation of the antibiotic. Inactivation takes place by transfer of a glucose molecule from a donor (UDP-glucose) to OM, a process catalyzed by an intracellular glucosyltransferase. Glucosyltransferase activity is detectable in cell-free extracts concurrent with biosynthesis of OM. The enzyme has been purified 1,097-fold as a monomer, with a molecular mass of 57.1 kDa by a four-step procedure using three chromatographic columns. The reaction operates via a compulsory-order mechanism. This has been shown by steady-state kinetic studies using either OM or an alternative substrate (rosaramycin) and dead-end inhibitors, and isotopic exchange reactions at equilibrium. OM binds first to the enzyme, followed by UDP-glucose. A ternary complex is thus formed prior to transfer of glucose. UDP is then released, followed by the glycosylated oleandomycin (GS-OM).[Abstract] [Full Text] [Related] [New Search]