These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electromyographic heterogeneity in the human temporalis and masseter muscles during static biting, open/close excursions, and chewing.
    Author: Blanksma NG, van Eijden TM.
    Journal: J Dent Res; 1995 Jun; 74(6):1318-27. PubMed ID: 7629340.
    Abstract:
    The human temporalis and masseter muscles are not activated homogeneously during static bite force tasks. In this study, we studied the possible existence of regional differences in these muscles under dynamic conditions. Electromyographic (EMG) activity was recorded by means of bipolar fine-wire electrodes. Six electrodes were inserted into the temporalis muscle and three into the masseter muscle. Recordings were made during maximal effort intercuspal and incisal static clenches, open/close excursions from both the intercuspal and incisal positions, and unilateral gum and licorice chewing on right and left sides. The EMG peak amplitudes and the peak occurrences were compared. During the static clenches and the open/close excursions, no differences could be demonstrated between the regions of the temporalis muscle. However, during the chewing tasks, the anterior and posterior regions behaved differently. Throughout almost all tasks, both superficial and deep parts could be distinguished in the masseter muscle. A further division of the deep masseter was task-dependent. In both the temporalis and masseter muscles, maximal activity (100%) was reached during intercuspal clenches. The average activity declined to 35% of the maximal activity in the temporalis muscle, to 47% in the deep, and to 86% in the superficial masseter during incisal clenches. During all chewing tasks, the EMG peak activity of the anterior temporalis and the superficial masseter muscles was higher in the working than in the balancing condition. The general finding was that different regions were preferentially activated, according to task. The detailed regional specialization previously observed during static bite force tasks could not be demonstrated in the present study.
    [Abstract] [Full Text] [Related] [New Search]