These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A model of skeletal muscle leucine kinetics measured across the human forearm. Author: Tessari P, Inchiostro S, Zanetti M, Barazzoni R. Journal: Am J Physiol; 1995 Jul; 269(1 Pt 1):E127-36. PubMed ID: 7631767. Abstract: We propose a new six-compartment model of intracellular muscle kinetics of leucine and of its transamination product alpha-ketoisocaproic acid (KIC) by combining systemic tracer infusions of [14C]- and [15N]leucine with the arterial-deep venous catheterization of the human forearm. Venous [14C]KIC specific activity (SA) is taken as representative of intracellular [14C]leucine SA, whereas net [15N]leucine disposal is used to calculate leucine inflow and outflow across forearm cell membrane(s). In post-absorptive normal subjects, model-derived rates of intracellular leucine release from and incorporation into protein were approximately 32% (P = 0.03) and approximately 37% greater (P = 0.025), respectively, than those calculated using a conventional arteriovenous approach. Forearm fasting proteolysis exceeded protein synthesis (P < 0.025), whereas leucine oxidation was greater than zero (P < 0.01), suggesting a net negative leucine (i.e., protein) balance. Leucine inflow from blood to cell represented approximately 30% of arterial leucine delivery; therefore approximately 70% of arterial leucine bypassed intracellular metabolism. This model provides a comprehensive description of regional leucine and KIC kinetics and new estimates of protein degradation and synthesis across the human forearm.[Abstract] [Full Text] [Related] [New Search]