These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reduction and transport of lipoic acid by human erythrocytes. Author: Constantinescu A, Pick U, Handelman GJ, Haramaki N, Han D, Podda M, Tritschler HJ, Packer L. Journal: Biochem Pharmacol; 1995 Jul 17; 50(2):253-61. PubMed ID: 7632170. Abstract: Reduction of exogenous lipoic acid to dihydrolipoate is known to occur in several mammalian cells and tissues. Dihydrolipoate is a potent radical scavenger, and may provide significant antioxidant protection. Because lipoic acid appears in the bloodstream after oral administration, we have examined the reduction of exogenous lipoate by human erythrocytes. Normal human erythrocytes reduced lipoate to dihydrolipoate only in the presence of glucose; deoxyglucose did not substitute for glucose, indicating that the reduction of lipoate requires glucose metabolism. Furthermore, the reduction was shown to be NADPH dependent. Erythrocytes isolated from a human subject with a genetic deficiency of glucose-6-phosphate dehydrogenase (and, therefore, deficient in the formation of NADPH) did not reduce lipoate. Dehydroepiandrosterone, a specific inhibitor of glucose-6-phosphate dehydrogenase, inhibited lipoate reduction. Our findings imply that some of the reduction of exogenous lipoic acid is catalysed by glutathione reductase, a flavoprotein dehydrogenase; mitomycin C, an inhibitor of FAD-dependent reductases, inhibited lipoate reduction by erythrocytes, and glutathione reductase purified from human erythrocytes was observed to reduce lipoic acid in a cell-free system. We further explored these findings with erythrocyte ghosts and liposomes. Our results indicate that a transport system exists for alpha-lipoic acid and dihydrolipoate; resealed erythrocyte ghosts, containing trapped lipoamide dehydrogenase and pyridine nucleotides, reduced externally added lipoate. By contrast, liposomes prepared with enzyme and pyridine nucleotides did not catalyze reduction of lipoate. This work indicates that uptake of exogenous lipoate and reduction to dihydrolipoate by normal human erythrocytes may contribute to oxidant protection in the human bloodstream.[Abstract] [Full Text] [Related] [New Search]