These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemistry and biology of the 2 beta-alkyl-3 beta-phenyl analogues of cocaine: subnanomolar affinity ligands that suggest a new pharmacophore model at the C-2 position. Author: Kozikowski AP, Eddine Saiah MK, Johnson KM, Bergmann JS. Journal: J Med Chem; 1995 Aug 04; 38(16):3086-93. PubMed ID: 7636872. Abstract: A series of 2 beta-alkyl-3 beta-phenyltropanes (i.e., the 2 beta-alkyl analogues of the WIN series) were prepared as analogues of cocaine and tested for their ability to displace [3H]mazindol binding and to inhibit high-affinity dopamine uptake into striatal nerve endings (synaptosomes). These 2 beta-alkyl analogues were readily prepared in optically pure form starting from cocaine by proceeding through the 2 beta-phenyl-bearing aldehyde 6 as a key intermediate. Wittig reaction of 6 with the appropriate phosphorane and hydrogenation delivered the final products. All new compounds with the exception of 8e were found to exhibit nanomolar or subnanomolar affinity for the cocaine binding site in the rat striatum. These results are in apparent opposition to the binding model previously proposed which suggests a hydrogen bond donor-acceptor interaction to be present in the vicinity of the C-2 substituent. Taken together with our previous reports and recent findings from other laboratories, we suggest a new pharmacophore model in which 2 beta-substituents lacking H-bond acceptors enhance affinity to the binding site through hydrophobic interactions. The new SAR data contained herein may be relevant to the design of possible cocaine antagonists.[Abstract] [Full Text] [Related] [New Search]