These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cholinergic regulation of tachykinin- and enkephalin-gene expression in the rat striatum. Author: Lucas LR, Harlan RE. Journal: Brain Res Mol Brain Res; 1995 Jun; 30(2):181-95. PubMed ID: 7637570. Abstract: Ninety-five percent of the neurons in the corpus striatum of the rat are medium spiny projection neurons, which contain tachykinins such as substance P, neurokinin A, and neurokinin B and the opiate peptides, enkephalin and dynorphin. The remaining 5% consist of interneurons, of which a small but significant proportion are cholinergic. The influence of these cholinergic interneurons on the neuropeptidergic projection systems in the striatum is poorly understood at this time. The present study explores the relationship between cholinergic receptor activation or muscarinic blockade on striatal neuropeptide gene expression. Adult male Sprague-Dawley rats were treated chronically either with a cholinergic agonist (physostigmine: 0.5 mg/kg/3 x day), a muscarinic antagonist (scopolamine HCl: 0.4 mg/kg/3 x day), or vehicle (PBS: 0.1 ml/100 g) administered for 6 days (s.c.). In situ hybridization was performed with probes directed against mRNAs for beta-preprotachykinin (a transcript containing substance P, neurokinin A, and other tachykinins), neurokinin B and preproenkephalin. Physostigmine administration resulted in a 12% decrease in the dorsolateral caudate-putamen and a 27% increase in the core of the nucleus accumbens in substance P/neurokinin A mRNA; and a 29% increase in the caudate-putamen and an 11% increase in the core of the nucleus accumbens in preproenkephalin mRNA levels. Scopolamine treatment resulted in a 28% and 48% decrease, respectively, in the caudate-putamen and in the shell of the nucleus accumbens in substance P/neurokinin A mRNA levels. Neurokinin B mRNA levels were increased by 50% in the shell of the accumbens after scopolamine. Preproenkephalin mRNA levels increased by 24% in the caudate-putamen and decreased by 20% in the core of the nucleus accumbens. From these results we tentatively conclude that cholinoceptive neuropeptidergic neurons are segregated along dorsoventral and mediolateral axes in the striatum, thus giving rise to non-homogenous responses upon cholinergic receptor activation or muscarinic blockade.[Abstract] [Full Text] [Related] [New Search]