These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of heavy metal ions on Ca(2+)-dependent K+ channels.
    Author: Vijverberg HP, Leinders-Zufall T, van Kleef RG.
    Journal: Cell Mol Neurobiol; 1994 Dec; 14(6):841-57. PubMed ID: 7641241.
    Abstract:
    1. The ability of various divalent metal ions to substitute for Ca2+ in activating distinct types of Ca(2+)-dependent K+ [K+(Ca2+)] channels has been investigated in excised, inside-out membrane patches of human erthrocytes and of clonal N1E-115 mouse neuroblastoma cells using the patch clamp technique. The effects of the various metal ions have been compared and related to the effects of Ca2+. 2. At concentrations between 1 and 100 microM Pb2+, Cd2+ and Co2+ activate intermediate conductance K+(Ca2+) channels in erythrocytes and large conductance K+(Ca2+) channels in neuroblastoma cells. Pb2+ and Co2+, but not Cd2+, activate small conductance K+(Ca2+) channels in neuroblastoma cells. Mg2+ and Fe2+ do not activate any of the K+(Ca2+) channels. 3. Rank orders of the potencies for K+(Ca2+) activation are Pb2+, Cd2+ > Ca2+, Co2+ >> Mg2+, Fe2+ for the intermediate erythrocyte K+(Ca2+) channel, and Pb2+, Cd2+ > Ca2+ > Co2+ >> Mg2+, Fe2+ for the small, and Pb2+ > Ca2+ > Co2+ >> Cd2+, Mg2+, Fe2+ for the large K+(Ca2+) channel in neuroblastoma cells. 4. At high concentrations Pb2+, Cd2+, and Co2+ block K+(Ca2+) channels in erythrocytes by reducing the opening frequency of the channels and by reducing the single channel amplitude. The potency orders of the two blocking effects are Pb2+ > Cd2+, Co2+ >> Ca2+, and Cd2+ > Pb2+, Co2+ >> Ca2+, respectively, and are distinct from the potency orders for activation. 5. It is concluded that the different subtypes of K+(Ca2+) channels contain distinct regulatory sites involved in metal ion binding and channel opening. The K+(Ca2+) channel in erythrocytes appears to contain additional metal ion interaction sites involved in channel block.
    [Abstract] [Full Text] [Related] [New Search]