These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains. Author: Bayer AS, Sullam PM, Ramos M, Li C, Cheung AL, Yeaman MR. Journal: Infect Immun; 1995 Sep; 63(9):3634-41. PubMed ID: 7642301. Abstract: Platelet aggregation by bacteria is felt to play an important role in the pathogenesis of infective endocarditis. However, the mechanisms involved in bacterium-induced platelet aggregation are not well-defined. In the present study, we examined the mechanisms by which Staphylococcus aureus causes rabbit platelet aggregation in vitro. In normal plasma, the kinetics of S. aureus-induced platelet aggregation were rapid and biphasic. The onset and magnitude of aggregation phase 1 varied with the bacterium-platelet ratio, with maximal aggregation observed at a ratio of 5:1. The onset of aggregation phase 2 was delayed in the presence of apyrase (an ADP hydrolase), suggesting that this later aggregation phase may be triggered by secreted ADP. The onset of aggregation phase 2 was delayed in the presence of prostaglandin I2-treated platelets, and this phase was absent when paraformaldehyde-fixed platelets were used, implicating platelet activation in this process. Platelet aggregation phase 2 was dependent on S. aureus viability and an intact bacterial cell wall, and it was mitigated by antibody directed against staphylococcal clumping factor (a fibrinogen-binding protein) and by the cyclooxygenase inhibitor indomethacin. Similarly, aggregation phase 2 was either delayed or absent in three distinct transposon-induced S. aureus mutants with reduced capacities to bind fibrinogen in vitro. In addition, a synthetic pentadecapeptide, corresponding to the staphylococcal binding domain in the C terminus of the fibrinogen delta-chain, blocked aggregation phase 2. However, phase 2 of aggregation was not inhibited by two synthetic peptides (alone or in combination) analogous to the two principal fibrinogen-binding domains on the platelet glycoprotein (GP) IIb/IIIa integrin receptor: (i) a recognition site on the IIIa molecule for the Arg-Gly-Asp (RGD) sequence of the fibrinogen alpha-chain and (ii) a recognition site on the IIb molecule for a dodecapeptide sequence of the fibrinogen delta-chain. This differs from ADP-induced platelet aggregation, which relies on an intact platelet GP IIb/IIIa receptor with an accessible RGD sequence and dodecapeptide recognition site for fibrinogen. Furthermore, a monoclonal antibody directed against the RGD recognition site on rabbit platelet GP IIb/IIIa receptors failed to inhibit rabbit platelet aggregation by S. aureus. Collectively, these data suggest that S. aureus-induced platelet aggregation requires bacterial binding to fibrinogen but is not principally dependent upon the two major fibrinogen-binding domains on the platelet GP IIb/IIIa integrin receptor, the RGD and dodecapeptide recognition sites.[Abstract] [Full Text] [Related] [New Search]