These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Markedly decreased expression of glutathione S-transferase pi gene in human cancer cell lines resistant to buthionine sulfoximine, an inhibitor of cellular glutathione synthesis. Author: Yokomizo A, Kohno K, Wada M, Ono M, Morrow CS, Cowan KH, Kuwano M. Journal: J Biol Chem; 1995 Aug 18; 270(33):19451-7. PubMed ID: 7642628. Abstract: Buthionine sulfoximine (BSO) is a synthetic amino acid that irreversibly inhibits an enzyme, gamma-glutamylcysteine synthetase (gamma-GCS), which is a critical step in glutathione biosynthesis. We isolated three BSO-resistant sublines, KB/BSO1, KB/BSO2, and KB/BSO3, from human epidermoid cancer KB cells. These cell lines showed 10-to 13-fold higher resistance to BSO, respectively, and had collateral sensitivity to cisplatin, ethacrynic acid, and alkylating agents such as melphalan and nitrosourea. Cellular levels of glutathione S-transferase pi (GST-pi) and its mRNA in BSO-resistant cell lines were less than 10% of the parental cells. Nuclear run-on assay showed that the transcriptional activity of GST-pi was decreased in BSO-resistant cells, and transient transfection of GST-pi promoter-chloramphenicol acetyltransferase constructs revealed that the sequences between -130 and -80 base pairs of the 5'-flanking region wer at least partially responsible for the decreased expression of the GST-pi gene. By contrast, gamma-GCS mRNA levels were 3-to 5-fold higher in resistant cell lines than in KB cells, and the gamma-GCS gene was found to be amplified in the BSO-resistant cells lines. GST-pi mRNA levels appeared to be inversely correlated with gamma-GCS mRNA levels in BSO-resistant cells. We further established the transfectants, KB/BSO3-pi1 and KB/ BSO2-pi2, that overexpressed GST-pi, from KB/BSO3, after introducing a GST-pi expression plasmid. These two transfectants had similar levels in gamma-GCS mRNA, drug sensitivity to alkylating agents, and glutathione content at those of KB cells. These findings suggest that the cellular levels of GST-pi and gamma-GCS might be co-regulated in these novel BSO-resistant cells.[Abstract] [Full Text] [Related] [New Search]