These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of induced charge in the kinestatic charge detector. Author: Wagenaar DJ, Terwilliger RA. Journal: Med Phys; 1995 May; 22(5):627-34. PubMed ID: 7643803. Abstract: The principle of the kinestatic charge detector (KCD) for digital radiography depends on the synchronization of the scan velocity of a parallel plate drift chamber with the cation drift velocity. Compared with line-beam scanners, this motion-compensated imaging technique makes better use of the x-ray tube output. A Frisch grid traditionally has been used within the KCD to minimize unwanted signal contributions from both cations and negative charge carriers during irradiation. In this work the charge induction process in a parallel plate geometry was investigated for the special case of the KCD. In the limit of infinite plates, the cathode charge density due to both cations and negative charge carriers increases quadratically in time for a kinestatically scanned narrow slit. In the KCD the cathode is segmented into an array of narrow electrodes, each aligned with the incident x-ray beam. Our conformal mapping computation determined that the shape of the induced charge signal depends critically on delta x/w, the ratio of electrode width to drift gap. Our conclusion introduces the possibility of eliminating the Frisch grid from the KCD design because the value of delta x/w required for transverse sampling in the KCD is sufficiently low as to allow "self-gridding" to take effect.[Abstract] [Full Text] [Related] [New Search]