These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Infection and replication of Tat- human immunodeficiency viruses: genetic analyses of LTR and tat mutations in primary and long-term human lymphoid cells.
    Author: Chang LJ, Zhang C.
    Journal: Virology; 1995 Aug 01; 211(1):157-69. PubMed ID: 7645208.
    Abstract:
    Tat is an essential regulatory protein for the replication of human immunodeficiency virus (HIV). Mutations in the tat gene have been shown to block HIV replication in human T cells. Several studies have established that Tat releases an elongation block to the transcription of HIV long terminal repeat (LTR); however, it is not known whether this mechanism alone is sufficient to explain the block to HIV replication in human T cells when Tat is absent. It is possible that Tat is also needed for other functions during HIV replication. To test these hypotheses, we studied several tat mutants, including two stop codon mutants and one deletion mutant using replication-competent HIV-1 constructs carrying wild-type or mutant LTRs with modifications in the NF-kappa B and/or Sp1 binding sites. In this study, we show that Tat- HIV-1 with wild-type LTRs can replicate in HeLa cells, and the virus produced from HeLa cells can infect primary peripheral blood lymphocytes and macrophages. It was found that the propagation of the Tat mutants containing wild-type LTRs was less efficient than that of the LTR-modified Tat mutants. Large amounts of viral RNA and particles were synthesized in infections established using the tat mutants that contain modified LTRs. However, this efficient propagation of the LTR-modified tat mutants was restricted to some lymphoid cell lines that have been transformed with other viruses. Thus, despite its essential role for releasing an elongation block, Tat is not otherwise absolutely required for synthesis of full-length HIV transcripts and assembly of virus particles. Direct sequencing of the viral genomes and reinfection kinetics showed no evidence of wild-type reversion even after prolonged infection with the Tat- virus. The implications for in vivo HIV-1 replication and potential application of this system to the study of alternative Tat function are discussed.
    [Abstract] [Full Text] [Related] [New Search]