These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate.
    Author: Lietz T, Bryła J.
    Journal: Arch Biochem Biophys; 1995 Aug 20; 321(2):501-9. PubMed ID: 7646077.
    Abstract:
    In renal tubules isolated from fed rabbits, 1 mM aspartate is mainly utilized for production of glutamine, glutamate, alanine, and serine, while it is not used for glucose synthesis. However, the addition of either 2 mM glycerol or 2 mM lactate, which are poor gluconeogenic substrates in renal tubules, results in acceleration of both glucose formation and incorporation of [14C]aspartate into glucose by several fold, accompanied by about a twofold decrease in glutamine synthesis and marked accumulation of glutamate and alanine. Ammonium release in renal tubules incubated with aspartate in the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, is also decreased on the addition of glycerol and lactate by about two- and threefold, respectively. Since intracellular [glyceraldehyde 3-phosphate]/[3-phosphoglycerate], [glycerol 3-phosphate]/[dihydroxyacetone phosphate], [lactate]/[pyruvate], and intramitochondrial [glutamate]/[2-oxoglutarate] x [NH4+] ratios are increased in comparison with control values determined with aspartate alone, it is likely that the stimulatory effect of lactate and glycerol on glucose formation from aspartate may be due to (i) an increased availability of reducing equivalents in the cytosol resulting in an enhancement of glyceraldehyde-3-phosphate dehydrogenase activity and (ii) elevation of the mitochondrial NADH/NAD- ratio causing a decrease in glutamate dehydrogenase activity resulting in a diminished glutamine synthesis and enhanced provision of carbon skeleton of aspartate for gluconeogenesis. Stimulation of glucose formation in the presence of 1 mM aspartate + glycerol is not related to cell volume changes. However, an increase for about 30% of intracellular water space induced by 10 mM aspartate + glycerol is accompanied by both diminished gluconeogenesis and enhanced glutamine synthesis, compared with values measured with 1 mM aspartate plus glycerol.
    [Abstract] [Full Text] [Related] [New Search]