These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification and characterization of 4-hydroxybenzoate 3-hydroxylase from a Klebsiella pneumoniae mutant strain. Author: Suárez M, Martín M, Ferrer E, Garrido-Pertierra A. Journal: Arch Microbiol; 1995 Jul; 164(1):70-7. PubMed ID: 7646318. Abstract: Unlike the parent wild-type strain, the Klebsiella pneumoniae mutant strain MAO4 has a 4-HBA+ phenotype. The capacity of this mutant to take up and metabolize 4-hydroxybenzoate (4-HBA) relies on the expression of a permease and an NADPH-linked monooxygenase (4-HBA-3-hydroxylase). Both enzymes are normally expressed at basal levels, and only the presence of 4-HBA in the media enhances their activities. Strikingly, when the Acinetobacter calcoaceticus pobA gene encoding 4-hydroxybenzoate-3-hydroxylase was expressed in hydroxybenzoate K. pneumoniae wild-type, the bacteria were unable to grow on 4-HBA, suggesting that the main difference between the wild-type and the mutant strain is the capability of the latter to take up 4-HBA. 4-HBA-3-hydroxylase was purified to homogeneity by affinity, gel-filtration, and anion-exchange chromatography. The native enzyme, which appeared to be a dimer of identical subunits, had an apparent molecular mass of 80 kDa and a pI of 4.6. Steady-state kinetics were analyzed; the initial velocity patterns were consistent with a concerted substitution mechanism. The purified enzyme had 362 amino acid residues, and a tyrosine seemed to be involved in substrate activation.[Abstract] [Full Text] [Related] [New Search]