These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of the nuclear gene encoding mitochondrial aconitase in the marine red alga Gracilaria verrucosa. Author: Zhou YH, Ragan MA. Journal: Plant Mol Biol; 1995 Jul; 28(4):635-46. PubMed ID: 7647296. Abstract: We have cloned a nuclear gene from the marine red alga Gracilaria verrucosa that encodes the complete 779 amino-acid mitochondrial aconitase (m-ACN), the first characterized from a photosynthetic organism. The N-terminal 28 deduced amino acids are predicted to constitute the mitochondrial transit peptide, the first described from a red alga. Putative transcriptional cis-acting elements were identified in the upstream untranslated region. The G. verrucosa m-ACN gene (m-ACN) is present in a single copy and is located ca. 1.5 kb upstream from the single-copy polyubiquitin gene. The single spliceosomal intron is located near the 5' end of the region encoding the mature m-ACN in precisely the same location and phase as intron 2 in Caenorhabditis elegans m-ACN; sequences at its 3' and 5' splice junctions and at the predicted lariat branch point conform well to the eukaryote consensus sequences. Multiple protein-sequence alignment of m-ACN, bacterial aconitase (b-ACN) and iron-responsive element-binding protein (IRE-BP), and phylogenetic analyses, revealed that m-ACN does not share a recent common ancestry with either b-ACN or IRE-BP.[Abstract] [Full Text] [Related] [New Search]