These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myocardial lipoprotein lipase activity: regulation by diabetes and fructose-induced hypertriglyceridemia. Author: Liu L, Severson DL. Journal: Can J Physiol Pharmacol; 1995 Mar; 73(3):369-77. PubMed ID: 7648516. Abstract: The decrease in myocardial lipoprotein lipase (LPL) activity observed previously in acute, severe models of insulin-deficient diabetes may be a compensatory response to hypertriglyceridemia and a sustained increase in fatty acid delivery to cardiomyocytes. The administration of fructose (10% solution in the drinking water for 4 days) to rats produced hypertriglyceridemia, but heparin-releasable LPL activity from perfused hearts and total and heparin-releasable LPL activities in isolated cardiomyocytes were not reduced. The acute (4 day) induction of a mild diabetic state (60 mg/kg streptozotocin) resulted in modest hypertriglyceridemia, and a selective decrease in heparin-releasable LPL activity in perfused hearts; LPL activity in cardiomyocytes from diabetic rat hearts was not reduced. Therefore, the diabetes-induced fall in myocardial LPL activity is not secondary to hypertriglyceridemia, since fructose treatment did not change LPL activity. Perfusion of rat hearts with 100 microM lysophosphatidylcholine (LPC) released a small amount of LPL activity into the perfusate, but only if albumin was omitted from the perfusion solution. Thus, the selective reduction in heparin-releasable LPL activity in perfused diabetic hearts is probably not the consequence of displacement by LPC, a lipolytic product of the LPL-catalyzed degradation of triacylglycerol-rich lipoproteins. Circulating LPL activity in the plasma of diabetic rats was not decreased relative to control plasma enzyme activity; therefore, the reduction in heparin-releasable LPL activity is not because circulating LPL was less available for uptake by the endothelium in diabetic hearts.[Abstract] [Full Text] [Related] [New Search]