These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of the oxaloacetate decarboxylase Na+ pump and its individual subunits in Escherichia coli and analysis of their function. Author: Di Berardino M, Dimroth P. Journal: Eur J Biochem; 1995 Aug 01; 231(3):790-801. PubMed ID: 7649179. Abstract: The oadGAB genes encoding the gamma, alpha and beta-subunits of the oxaloacetate decarboxylase Na+ pump in Klebsiella pneumoniae have been cloned on plasmid pSK-GAB and expressed in Escherichia coli. The membranes of the recombinant E. coli clone contained about three times as much catalytically active oxaloacetate decarboxylase (3 mg protein/2 g wet cells) as those of the K. pneumoniae strain from which the genes were derived. The enzyme was solubilised from the membranes with Triton X-100 and purified. Its Na+ transport function was demonstrated after reconstitution into proteoliposomes. Proteoliposomes containing only the membrane-bound subunits beta and gamma (not the peripheral alpha-subunit) were unable to catalyse Na+ translocation in response to a transmembrane Na+ (delta pNa+) or electrical gradient (delta psi). Individual subunits of oxaloacetate decarboxylase and combinations of two subunits were expressed from appropriate derivatives of plasmid pSK-GAB. The hydrophobic subunits beta and beta gamma were membrane-bound as expected. Interestingly, the alpha-subunit was located in the cytoplasm if expressed separately or together with beta, but became membrane-bound if expressed together with gamma. A gamma alpha complex was isolated from such membranes by avidin-Sepharose affinity chromatography. Interactions of the gamma-subunit with the water-soluble alpha-subunit and with the membrane-bound beta-subunit are therefore required to form the oxaloacetate decarboxylase complex. The combinations of separately expressed subunits gamma alpha + beta and beta gamma+alpha were shown to yield the catalytically active enzyme. The alpha or the beta-subunit and the combinations of these subunits with the gamma-subunit were therefore expressed in E. coli in a catalytically competent state. Functional expression of the separate gamma-subunit, however, could not be demonstrated. The alpha-subunit was strongly overexpressed from a pT7-7 derived plasmid, but was only partially biotinylated under these conditions. On coexpression of the birA gene encoding biotin ligase the major part (80-100%) of the overexpressed alpha-subunit was biotinylated. Highly purified alpha-subunit was obtained by fractionated precipitation of the soluble cell fraction with ammonium sulfate. Incubation of the alpha-subunit with oxaloacetate led to a CO2 transfer to its prosthetic biotin group with the formation of stoichiometric amounts of pyruvate. The velocity of the CO2 transfer to the biotin on the alpha-subunit was about three orders of magnitude too low to account for the rate of the overall reaction. The carboxyltransfer reaction was significantly accelerated if the gamma-subunit was additionally present.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]