These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigation of the 'n-1' impurity in phosphorothioate oligodeoxynucleotides synthesized by the solid-phase beta-cyanoethyl phosphoramidite method using stepwise sulfurization. Author: Fearon KL, Stults JT, Bergot BJ, Christensen LM, Raible AM. Journal: Nucleic Acids Res; 1995 Jul 25; 23(14):2754-61. PubMed ID: 7651837. Abstract: Electrospray ionization mass spectrometry (ESI-MS) of reversed-phase HPLC-purified phosphorothioate oligodeoxynucleotides (S-ODNs), and the single-('n - 1') and double-nucleotide deletion ('n - 2') impurities subsequently isolated from them by preparative polyacrylamide gel electrophoresis (PAGE), has provided direct analytical data for the identification of both S-ODN products and their major oligomeric impurities. The 'n - 1' impurity seen by PAGE consists of a mixture of all possible single deletion sequences relative to the parent S-ODN (n-mer) and results from repetitive, though minor, imperfections in the synthesis cycle, such as incomplete detritylation, or incomplete coupling followed by incomplete capping or incomplete sulfurization. Therefore each possible 'n - 1', 'n - 2', and other short-mer sequence is present only in very low abundance. The conversion of the gel-isolated 'n - 1' impurity from phosphorothioate to phosphodiester followed by base composition-dependent anion-exchange chromatography allowed for independent confirmation of its heterogeneity and quantitation of its various components. ESI-MS of both S-ODN products and their gel-isolated impurities allowed for this first molecular identification of 'n - 1', 'n - 2' and other oligomeric impurities in S-ODNs obtained from state-of-the-art solid-phase synthesis and reversed-phase HPLC purification methods.[Abstract] [Full Text] [Related] [New Search]