These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemical modulation of metallothionein I and III mRNA in mouse brain. Author: Zheng H, Berman NE, Klaassen CD. Journal: Neurochem Int; 1995 Jul; 27(1):43-58. PubMed ID: 7655347. Abstract: Metallothioneins (MTs) are sulfhydryl-rich proteins. MT-I and MT-II are found in all tissues of the body, while MT-III exists only in brain. Regulation of MT-I and MT-III mRNA was studied in brain and liver of control C57BL/6J mice and mice given chemicals known to increase MT-I, namely, lipopolysaccharide (LPS), zinc chloride (Zn), cadmium chloride (Cd), dexamethasone (Dex), ethanol, and kainic acid (KA). Northern blot analysis revealed that MT-I mRNA levels in liver were induced dramatically (12-27-fold over basal levels) by all of the chemicals, while in brain only LPS produced an increase in MT-I mRNA (2-fold). Interestingly, the MT-I inducers, Cd, Dex, ethanol, and KA, down-regulated brain MT-III mRNA levels by approx. 30%. Because brain is such a heterogenous tissue, in situ hybridization was used to localize MT-I and MT-III mRNA in control and treated mice. MT-I mRNA signal, which was most abundant in the glial cells of the Purkinje cell layer of the cerebellum in control mice, appeared to be enhanced in mice given the MT-I inducers (LPS, Zn, Cd, Dex, ethanol, and KA). MT-I mRNA hybridization signal was also enhanced in the olfactory bulbs from LPS- and Cd-treated mice, while this signal was present but weak in control brains. MT-III mRNA hybridization signals were localized in hippocampus and co-localized with MT-I message in the glial cells of the Purkinje cell layer of the cerebellum. In addition, diffuse MT-III mRNA signals were visible in areas of the cerebral cortex, and in the molecular layer of the cerebellum. Signals for MT-III in hippocampus appeared to be reduced by KA, Dex and LPS treatment, while in the cortical region, MT-III mRNA signals appeared to be enhanced by KA, Cd, and ethanol treatment. In conclusion, both MT-I and MT-III expression in brain appears to be modulated by exogenous treatment, however, the changes are small in relation to those observed in liver. Chemical-induced alterations of MT mRNA are non-uniform throughout the brain, and thus best studied in a region-specific manner.[Abstract] [Full Text] [Related] [New Search]