These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fos protein immunoreactivity in the developing olfactory bulbs of normal and naris-occluded rats. Author: Klintsova AY, Philpot BD, Brunjes PC. Journal: Brain Res Dev Brain Res; 1995 May 26; 86(1-2):114-22. PubMed ID: 7656404. Abstract: Immediate early genes such as c-fos may be a route through which extracellular events affect genomic expression. Expression of immediate early genes is important in the transcriptional regulation necessary for the normal development of the nervous system. Developmental patterns of Fos protein (the product of c-fos immediate early gene expression) were studied in the main olfactory bulb of the rat using immunocytochemistry. Embryonic Day 21 (E21, the last prenatal day), as well as Postnatal Day 0 (P0), P1, P5, P10, P15, P20 and P30 subjects were examined. Although staining was absent in the E21 bulb, there was a rapid onset of Fos synthesis within hours after birth. Distribution of Fos-immunoreactive (Fos-ir) nuclei corresponded to the sequence of bulb maturation: numerous mitral/tufted and granule cells were labeled on P0, followed by the appearance of Fos-ir in the nuclei of periglomerular cells and an increase in the number of stained granule cells with development. Surgical closure of an external naris on P1 resulted in a 70% reduction in the number of Fos-ir granule cell nuclei as early as 2 h after the manipulation. During the next 30 days, levels of Fos staining further diminished in experimental bulbs when compared to their contralateral controls. Nevertheless, electrical stimulation of the contralateral bulb in P20 pups resulted in a robust increase of Fos labeling in most main and accessory olfactory bulb mitral cells and in many granule and periglomerular neurons, suggesting that the experimental bulbs remain competent to express Fos protein.[Abstract] [Full Text] [Related] [New Search]