These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Computational studies of the early intermediates of the bacteriorhodopsin photocycle.
    Author: Engels M, Gerwert K, Bashford D.
    Journal: Biophys Chem; 1995; 56(1-2):95-104. PubMed ID: 7662874.
    Abstract:
    Starting from a refined model of bacteriorhodopsin's ground state, alternative models of the K and L intermediates with retinal in either 13-cis or 13-14-dicis configuration have been generated by molecular dynamics simulations. All models have been submitted to electrostatic calculations in order to determine the pK1/2 values of particular residues of interest in the active site. Our pK1/2 calculations for the refined ground state can reestablish our former results, this time without adjusting the intrinsic pK of the Schiff base. For the K intermediate the electrostatic calculations show no significant change in the pK1/2 values compared to the ground state for most of the titrating groups in the active site. For the L intermediate where retinal possesses a 13-cis configuration, we found that electrostatic factors decrease the pK1/2 value of the Schiff base by 4-5 pK-units compared to the ground state. The calculations suggest that changes of the electrostatic environment via a pure 13-cis model are sufficient to produce a pK reduction of the Schiff base that will promote subsequent proton transfer steps.
    [Abstract] [Full Text] [Related] [New Search]