These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two regions of GLUT 2 glucose transporter protein are responsible for its distinctive affinity for glucose.
    Author: Buchs A, Wu L, Morita H, Whitesell RR, Powers AC.
    Journal: Endocrinology; 1995 Oct; 136(10):4224-30. PubMed ID: 7664639.
    Abstract:
    The glucose transporter in the hepatocyte and pancreatic beta-cell (GLUT 2) has a lower affinity for glucose than other members of the glucose transporter family. To investigate the molecular mechanism for the distinctive affinity of GLUT 2 for glucose, we expressed chimeric GLUT 2 and GLUT 4 proteins in Xenopus oocytes and measured 3-O-methyl-D-glucose transport. In the oocyte system, GLUT 2 had a Km of 31.8 +/- 2.8 mM for 3-O-methyl-D-glucose, whereas GLUT 4 had a Km of 7.2 +/- 2.4 mM under equilibrium exchange conditions. GLUT 4/GLUT 2 chimera that contained the intracellular loop and transmembrane domains 7-12 of GLUT 2 (amino acids 239-497) had a Km similar to that of wild-type GLUT 2. A GLUT 4/GLUT 2 chimera in which the COOH-terminal 30 amino acids of GLUT 4 were replaced with the corresponding region of GLUT 2 had a 2-fold higher Km than GLUT 4, but still had a much lower Km than GLUT 2. These results indicate that both transmembrane domains 7-12 and the COOH-terminus of the protein are responsible for the distinctive glucose affinity of GLUT 2.
    [Abstract] [Full Text] [Related] [New Search]