These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis.
    Author: Thompson CH, Kemp GJ, Sanderson AL, Radda GK.
    Journal: J Appl Physiol (1985); 1995 Jun; 78(6):2131-9. PubMed ID: 7665409.
    Abstract:
    To investigate mitochondrial regulation and its response to a defect in oxidative metabolism, we used 31P-magnetic resonance spectroscopy to study phosphocreatine (PCr) recovery in rat leg muscle after sciatic nerve stimulation at 1-4 Hz. We studied normal animals and animals with defective skeletal muscle mitochondrial function after experimental cardiac infarction. To analyze these data, we used three current theoretical approaches to the control of mitochondrial ATP synthesis, based on its hyperbolic relationship to cytosolic ADP concentration and on its linear relationships to PCr concentration and the free energy of ATP hydrolysis. The mitochondrial ADP concentration for one-half maximum rate of ATP synthesis appeared at least twice as high as the 30 microM expected from in vitro studies. According to all three approaches, the apparent maximum rate of ATP synthesis was independent of stimulation frequency and end-exercise pH and PCr and ADP concentrations and was reduced by approximately 50% after experimental cardiac infarction. Analysis of PCr recovery kinetics is a robust and practical way to study mitochondrial regulation and to quantify effective mitochondrial defects in vivo.
    [Abstract] [Full Text] [Related] [New Search]