These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena.
    Author: Mayer D, Schlensog V, Böck A.
    Journal: J Bacteriol; 1995 Sep; 177(18):5261-9. PubMed ID: 7665514.
    Abstract:
    The gene budR, whose product is responsible for induction of the butanediol formation pathway under fermentative growth conditions in Klebsiella terrigena, has been cloned and sequenced. This gene is separated from the budABC operon by a nontranslated region of 106 bp and transcribed in the opposite direction. budR codes for a protein of molecular weight 32,124, the sequence of which exhibits characteristics of regulators belonging to the LysR family. When transferred into the heterologous host Escherichia coli, budR activates expression of budA'-lacZ transcriptional and translational fusions with a regulatory pattern identical to that in K. terrigena, namely, induction by acetate, low pH, and anaerobiosis. Induction by acetate was specific, indicating that it is the physiological inducer. Primer extension analysis located the start site of transcription to two positions, 23 and 24 bp upstream of the budR initiation codon, and also showed that BudR strongly autoregulates its own expression. The products of fhlA, arcA, hip, ntrA, and katF did not influence expression of the bud operon. A mutation in fnr, however, led to a threefold increase in expression, indicating that Fnr acts as a repressor. The results support the notion that BudR coordinates the activity of the energy-conserving, nonreductive, but acidifying acetate formation pathway with the expression of the non-energy-conserving, reductive, but nonacidifying butanediol pathway.
    [Abstract] [Full Text] [Related] [New Search]